

This article was downloaded by:

On: 30 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Precious Metals: A Convenient Recycle Procedure for Laboratory Rejects with Spectroscopic Characterisation of the Products

M. S. Campos^a; A. Passos Felicíssimol^a

^a Instituto de Química, Universidade de São Paulo, São Paulo, Brazil

To cite this Article Campos, M. S. and Felicíssimol, A. Passos(2000) 'Precious Metals: A Convenient Recycle Procedure for Laboratory Rejects with Spectroscopic Characterisation of the Products', *Spectroscopy Letters*, 33: 4, 485 — 494

To link to this Article: DOI: 10.1080/00387010009350133

URL: <http://dx.doi.org/10.1080/00387010009350133>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

**PRECIOUS METALS : A CONVENIENT RECYCLE PROCEDURE
FOR LABORATORY REJECTS WITH SPECTROSCOPIC
CHARACTERISATION OF THE PRODUCTS**

Key-words: coordination chemistry, inorganic synthesis, organometallic compounds, transition metals

M. S. Campos and A. M. Passos Felicíssimo¹

Instituto de Química, Universidade de São Paulo
Av., Prof. Lineu Prestes, 748 - São Paulo, 05508-900, Brazil
E-mail address: ampfelic@quim.iq.usp.br

ABSTRACT

The recycling process of metals is also a good opportunity to get in touch with the economic and environmental issues involving the routine in the chemistry laboratory. This strategy has been introduced regularly in the laboratory in order to reduce the waste material storage. The recovery process focusing on the precious metals, gold and palladium, gives as a result the phosphine derivatives of these metals, compounds that are extremely useful in

different areas: catalysis, organometallic syntheses, and in medicine (the gold derivatives are used in the treatment of arthritis and neoplasias). AuPPh_3Cl and $\text{Pd}(\text{PPh}_3)_2\text{Cl}_2$ were prepared from rejects stored in the laboratory using a new synthetic route and were characterised by ^{31}P { ^1H } , UV/visible spectra and elemental analysis.

INTRODUCTION

Environmental carelessness concerning waste material deposition can be substantially reduced through routine recycling procedures. Metal recovery preserves limited mineral sources besides saving the energy spent in the extraction of primary resources. The recovery process for the precious metals, gold and palladium, illustrates physical and chemical procedures, in both, implicit application and technological skills.

Otherwise, this recycling process gives, as a result, the isolation of phosphine derivatives of gold that are compounds extremely useful in different areas of Chemistry, e. g., use as precursors in catalysts syntheses (1) its application in medicine in the treatment of rheumatoid arthritis, and (2) as well as in the treatment of neoplasias as a cytostatic drug $(\text{Et}_3\text{PAuCl}, \text{Me}_3\text{PAuCl}, \text{PPh}_3\text{AuCl})$ (3).

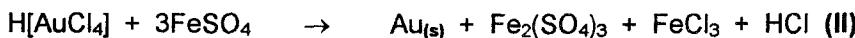
The compound AuPPh_3Cl and its derivatives are also used as precursors in the synthesis of gold clusters (4). The addition of fragments $[\text{AuPPh}_3]^+$ is an

important step in the synthesis of some heterometallic clusters; AuPPh_3Cl and $\text{AuPPh}_3\text{NO}_3$ are commonly used. These compounds are obtained according to very well established procedures found in the literature (5,6). Their utilisation as precursors is based on the isolobal analogy principle between H^+ and $[\text{AuPPh}_3]^+$. Ex : reaction I(7)

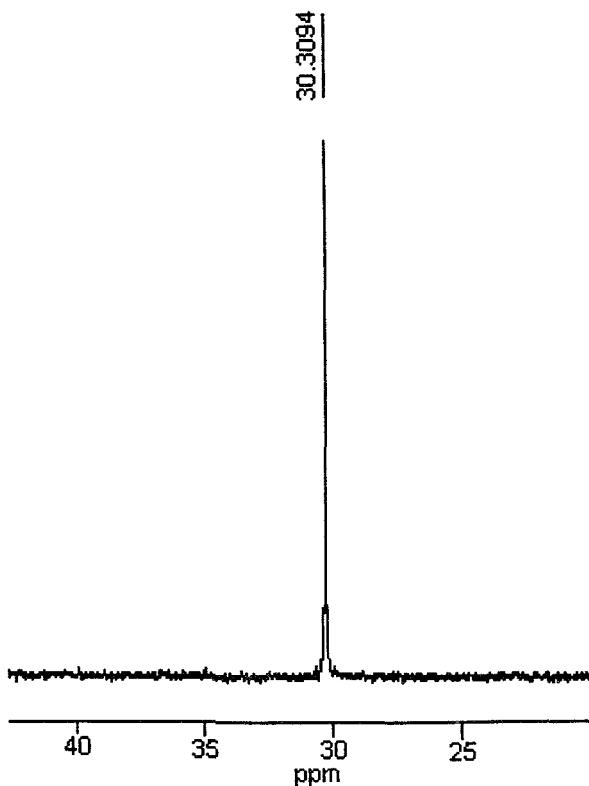
In this paper a new synthetic route is presented established for the recovery of gold and palladium as AuPPh_3Cl and $\text{Pd}(\text{PPh}_3)_2\text{Cl}_2$ from the rejects stored in the laboratory. This route is a derivative of the classic method found in the literature (8).

MATERIALS AND METHODS

Triphenylphosphine was purchased from Sigma-Aldrich Chemical Company and ferric sulphate from Synth. The ethanol, methanol, dichloromethane, and acetone were from Merck Chemical Company (analytical grade) and diethyl ether was from Carlo Erba Reagenti.


The laboratory residue is rich gold and palladium and also triphenylphosphine, partially dissolved in a mixture of different solvents (acetone, methanol, ethanol, dichloromethane, diethyl ether). This mixture is filtered to separate the solid phase, constituted of insoluble by-products of

synthesised compounds (clusters) and other derivatives eventually formed during the storage period.


The filtrate obtained, with intensive yellow colour is distilled. As a consequence, a reasonable amount of AuPPh_3Cl precipitates in the flask (transparent needle crystals). The content of the flask is filtered off under low pressure, washed with diethyl ether and dried.

The evaporation of the solvents obtained from distillation is done under temperature control. The volatile fraction (diethyl ether and dichloromethane) is discarded and the other fraction constituted of higher boiling point solvents, (mostly ethanol and acetone) is stored for further use as cleaning solvents in the laboratory.

The first compound obtained, AuPPh_3Cl , is dissolved in CH_2Cl_2 , filtrated through diatomaceous earth and crystallised in diethyl ether. After one hour is filtered off, washed with diethyl ether and dried. The reject of this procedure (the filtrate) is collected in a flask and stored regarding further recovering process where the palladium is obtained as $\text{Pd}(\text{PPh}_3)_2\text{Cl}_2$, and gold as a metal. After the residue treatment (8), gold is obtained as metallic gold according to reaction **II** using ferric sulphate solution.

The gold is collected as a fine powder using a centrifuge and separated from solution. The solution is submitted to a drying process using a heating

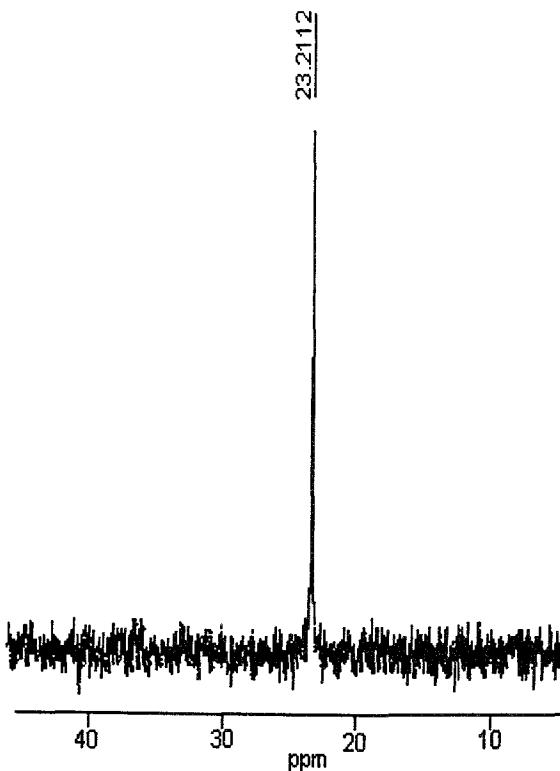


Figure 1: ^{31}P NMR{ ^1H } of AuPPh_3Cl

plate. Initially the precipitation of ferric salts occurs which are filtered off carefully. The remaining solution after drying gives the metallic palladium as a fine powder that is weighed and dissolved by heating in aqua regia (approximately 20mL per each gram of metal). The solution is then evaporated near dryness, then HCl concentrated (20mL, 3 times) is added to form H_2PdCl_4 . The resulting solution is filtered through diatomaceous earth and stored until

cold. This solution is then added to an emulsion of triphenylphosphine and ethanol and stirred with a magnetic bar. The mixture changes to a yellow colour immediately. After 1 hour stirring, the compound is filtered off, washed with ethanol and diethyl ether and dried.

The proportion used for H_2PdCl_4 and PPh_3 is 1:2 (reactions **III** and **IV**)

Figure 2: ${}^{31}\text{P}$ NMR(${}^1\text{H}$) of $[\text{Pd}(\text{PPh}_3)_2\text{Cl}_2]$

Table 1: Elemental analysis results of four fractions of the compound $\text{Au}(\text{PPh}_3)\text{Cl}$

Results	% C	% H	% Cl
Theoretical	43.68	3.03	7.18
Fraction 1	43.60	3.03	7.18
Fraction 2	43.63	3.02	7.17
Fraction 3	43.72	3.06	7.15
Fraction 4	43.58	2.99	7.18

Table 2: Elemental analysis results of the compound $[\text{Pd}(\text{PPh}_3)_2\text{Cl}_2]$

Results	% C	% H	% Cl
Theoretical	61.59	4.32	10.10
Experimental	61.61	4.31	10.08

RESULTS

The compounds were characterised by elemental analysis (Perkin-Elmer Elemental Analyzer 2400CHN), NMR $^{31}\text{P}\{\text{H}\}$ (Bruker 200MHz), and UV-visible spectroscopy (Hitachi U-300 spectrophotometer).

The compound AuPPh_3Cl was obtained in four different fractions and each one was characterised through elemental analysis. The results of elemental analysis are shown in Tables 1 and 2.

The NMR $^{31}\text{P}\{\text{H}\}$ spectra of AuPPh_3Cl (in CH_2Cl_2 , using H_3PO_4 as an external reference at 25°C) shows a single peak at δ 30.3 (P) and the spectrum of $[\text{Pd}(\text{PPh}_3)_2\text{Cl}_2]$ using the same conditions showed the characteristic peak of this compound at δ 23.2 (Fig. 1 and 2).

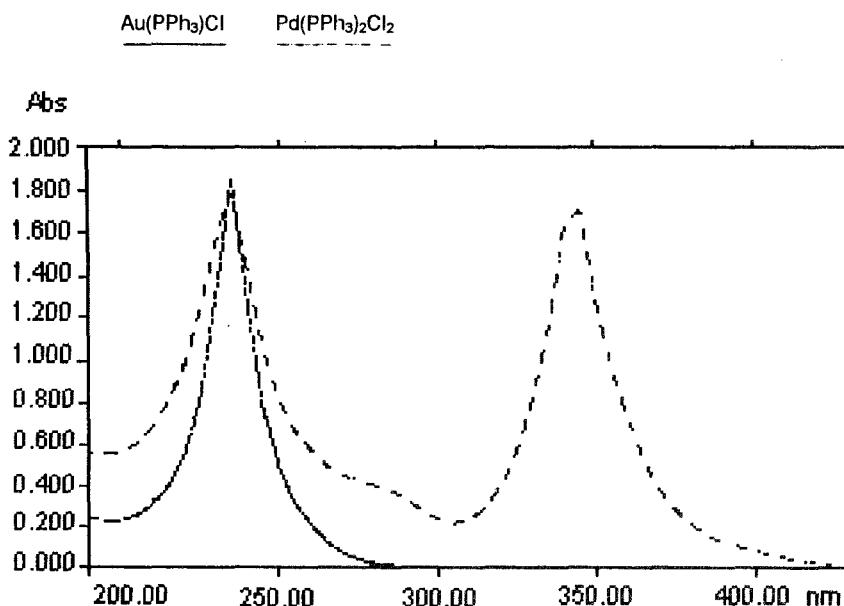


FIG. 3: UV-visible spectra of the compounds

The UV/visible spectra of the compounds (Fig. 3) showed bands in the region of 254nm assigned to the PPh_3 aromatic groups, present in both compounds (10).

CONCLUSION

10L of residue has been treated using this route. 12.5g of pure AuPPh_3Cl has been obtained corresponding to 4.9g of metallic gold that were spared. The residue treated using the method found in the literature (8) gave 4.98g of pure gold and 10.54g of pure $\text{Pd}(\text{PPh}_3)_2\text{Cl}_2$.

Through this experiment two goals were achieved; first, the pollution can be avoided by recycling chemicals, second, some economic measures are adopted when new synthetic routes are established in order to reduce the hazardous waste material in the laboratory.

ACKNOWLEDGEMENTS

This work has been supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

REFERENCES

1. Graf, I. V. G., Bacon, J. W., Consugar, M. B., Curley, M. E., Ito, L. N., Pignolet, L. H. Cluster Chemistry on Surfaces: Characterisation and Catalytic Studies of Phosphine-Stabilized Platinum-Gold Clusters on Silica and Alumina Supports. In: *Inorg. Chem.* 1996; 35: 689-694.
2. Isab, A. A., Shaw III, C. F., Haeschell, J. D., Locke, J. Reactions of Trimethylphosphine Analogues of Auranofin with Bovine Serum Albumin. In: *Inorg. Chem.* 1988; 27 : 3588-3592.
3. Mirabelli, C. K., Johnson, C. K., Sung, C. M., Faucette, F., Girard, G. R., Kuo, G. Y., Stanley, S. T. Correlation of the in Vitro Cytotoxic and in Vivo Antitumor Activities of Gold (I) Coordination Complexes. In: *J. Med. Chem.*, 1986; 29: 218-223.
4. Mingos, D. M. P. Structure and Bonding in Cluster Compounds of Gold. In: *Polyhedron* 1984; 3: 1289-1297.
5. Malvano, M. L. In: *Atti Reali Accad. Nazl. Lincei* 1908; 17: 857.

6. Malatesta, L., Naldini, L., Cariati, F. In: *Coord. Chem. Ver.* 1966; 1: 255.
7. Mingos, D. M. P., Watson, M. J. Heteronuclear Gold Cluster Compounds. In: *Advances in Inorganic Chemistry* 1992; 39: 327-399.
8. Clements, R. S.) Twenty Five Year's Progress in Platinum Metals Refining. In: *The Industrial Chemistry* 1962; July: 345-354.
9. Mueting, A. M., L.H. Pignolet, unpublished results.
10. Bos, W. in: Gold Clusters Compounds: Synthesis and Reactivity 1987; *PhD Thesis*: U. Nijmegen, NL.

Date Received: October 6, 1999

Date Accepted: March 15, 2000